DP-155, a lecithin derivative of indomethacin, is a novel nonsteroidal antiinflammatory drug for analgesia and Alzheimer's disease therapy.
نویسندگان
چکیده
DP-155 is a lipid prodrug of indomethacin that comprises the latter conjugated to lecithin at position sn-2 via a 5-carbon length linker. It is cleaved by phospholipase A2 (PLA)(2) to a greater extent than similar compounds with linkers of 2, 3, and 4 carbons. Indomethacin is the principal metabolite of DP-155 in rat serum and, after DP-155 oral administration, the half-life of the metabolite was 22 and 93 h in serum and brain, respectively, compared to 10 and 24 h following indomethacin administration. The brain to serum ratio was 3.5 times higher for DP-155 than for indomethacin. In vitro studies demonstrated that DP-155 is a selective cyclooxygenase (COX)-2 inhibitor. After it is cleaved, its indomethacin derivative nonselectively inhibits both COX-1 and -2. DP-155 showed a better toxicity profile probably due to the sustained, low serum levels and reduced maximal concentration of its indomethacin metabolite. DP-155 did not produce gastric toxicity at the highest acute dose tested (0.28 mmol/kg), while indomethacin caused gastric ulcers at a dose 33-fold lower. Furthermore, after repeated oral dosing, gastrointestinal and renal toxicity was lower (10- and 5-fold, respectively) and delayed with DP-155 compared to indomethacin. In addition to reduced toxicity, DP-155 had similar ameliorative effects to indomethacin in antipyretic and analgesia models. Moreover, DP-155 and indomethacin were equally efficacious in reducing levels of amyloid ss (Ass)42 in transgenic Alzheimer's disease mouse (Tg2576) brains as well as reducing Ass42 intracellular uptake, neurodegeneration, and inflammation in an in vitro AD model. The relatively high brain levels of indomethacin after DP-155 administration explain the equal efficacy of DP-155 despite its low systemic blood concentrations. Compared to indomethacin, the favored safety profile and equal efficacy of DP-155 establish the compound as a potential candidate for chronic use to treat AD-related pathology and for analgesia.
منابع مشابه
P115: A Novel High Tech Approach to Monitor the Pharmacotherapy of Alzheimer; a Narrative Review
Alzheimer's disease (AD) is multisystem and multifactor disease with a long no-symptom stage. We propose that a more effective approach to use fMRI as a still emerging, repeatable, non- invasive neuroimaging tools that can be very useful for evaluating, diagnosis, treatment and drugs- development. We studied 30 articles which published between 2008-2017 that included the effects of different bi...
متن کاملMode of administration-dependent brain uptake of indomethacin: sustained systemic input increases brain influx.
Nonsteroidal anti-inflammatory drugs, including indomethacin, have been found in both epidemiological and clinical studies to reduce the prevalence and severity of Alzheimer's disease. However, long-term use of indomethacin is limited by significant gastrointestinal and renal toxicities. An indomethacin prodrug that delivers low and continuous blood levels of the drug showed a superior safety p...
متن کاملNSAID’s and Tissue Repair – 2003 – 2006 References
BACKGROUND: Nonsteroidal anti-inflammatory drugs are commonly prescribed after rotator cuff repair. These agents can impair bone formation, but no studies have evaluated their impact on tendon-to-bone healing. HYPOTHESIS: Traditional nonselective nonsteroidal antiinflammatory drugs and cyclooxygenase-2-specific nonsteroidal anti-inflammatory drugs interfere with tendon-to-bone healing. STUDY DE...
متن کاملNovel Functional Sets of Lipid-Derived Mediators with Antiinflammatory Actions Generated from Omega-3 Fatty Acids via Cyclooxygenase 2–Nonsteroidal Antiinflammatory Drugs and Transcellular Processing
Aspirin therapy inhibits prostaglandin biosynthesis without directly acting on lipoxygenases, yet via acetylation of cyclooxygenase 2 (COX-2) it leads to bioactive lipoxins (LXs) epimeric at carbon 15 (15-epi-LX, also termed aspirin-triggered LX [ATL]). Here, we report that inflammatory exudates from mice treated with omega-3 polyunsaturated fatty acid and aspirin (ASA) generate a novel array o...
متن کاملProstaglandins inhibit endogenous pain control mechanisms by blocking transmission at spinal noradrenergic synapses.
Spinal intrathecal injections of the nonsteroidal antiinflammatory analgesics (NSAIAs) indomethacin and acetylsalicylic acid, which inhibit prostaglandin synthesis, cause dose-dependent hypoalgesia in the rat. Intrathecal injections of prostaglandin-E2 (PGE2) produce dose-dependent hyperalgesia. To determine whether this action of prostaglandins on the central nervous system is mediated through...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CNS drug reviews
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2007